An Infeasible Incremental Bundle Method for Nonsmooth Optimization Problem Based on CVaR Portfolio
نویسندگان
چکیده
منابع مشابه
An Infeasible Bundle Method for Nonsmooth Convex Constrained Optimization without a Penalty Function or a Filter
Global convergence in constrained optimization algorithms has traditionally been enforced by the use of parametrized penalty functions. Recently, the filter strategy has been introduced as an alternative. At least part of the motivation for filter methods consists in avoiding the need for estimating a suitable penalty parameter, which is often a delicate task. In this paper, we demonstrate that...
متن کاملDouble Bundle Method for Nonsmooth DC Optimization
The aim of this paper is to introduce a new proximal double bundle method for unconstrained nonsmooth DC optimization, where the objective function is presented as a difference of two convex (DC) functions. The novelty in our method is a new stopping procedure guaranteeing Clarke stationarity for solutions by utilizing only DC components of the objective function. This optimality condition is s...
متن کاملCVaR Robust Mean - CVaR Portfolio Optimization
One of the most important problems faced by every investor is asset allocation. An investor during making investment decisions has to search for equilibrium between risk and returns. Risk and return are uncertain parameters in the suggested portfolio optimization models and should be estimated to solve theproblem. The estimation might lead to large error in the final decision. One of t...
متن کاملAn Approximate Quasi-Newton Bundle-Type Method for Nonsmooth Optimization
and Applied Analysis 3 rate of convergence under some additional assumptions, and it should be noted that we only use the approximate values of the objective function and its subgradients which makes the algorithm easier to implement. Some notations are listed below for presenting the algorithm. (i) ∂f(x) = {ξ ∈ Rn | f(z) ≥ f(x) + ξT(z − x), ∀z ∈ R}, the subdifferential of f at x, and each such...
متن کاملLimited Memory Bundle Method for Large Bound Constrained Nonsmooth Optimization
1. Abstract Practical optimization problems often involve nonsmooth functions of hundreds or thousands of variables. As a rule, the variables in such large problems are restricted to certain meaningful intervals. In the report [Haarala, Mäkelä, 2006] we have described an efficient adaptive limited memory bundle method for large-scale nonsmooth, possibly nonconvex, bound constrained optimization...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Complexity
سال: 2021
ISSN: 1099-0526,1076-2787
DOI: 10.1155/2021/6640781